Bluetooth AOA Broadcast Protocol
Overview:
Currently supports ultra-low power Bluetooth BLE5.1, supports docking with Bluetooth gateways, Bluetooth AoA high-precision gateways (Hesin IoT, Lan Ce, and other mainstream gateways); connects to Bluetooth devices; scans beacons and all other Bluetooth protocols and functions
[bookmark: 1.AOA广播发送格式]1. AOA Broadcast Sending Format
	Field Name
	Description

	Header (0x02)
	1 octet, the message type is non-connectable advertising

	Length (0x25)
	This length refers to the effective payload data length in the PDU, excluding the header and length.

	Send MAC address
	6 octets

	Length (0x1E)
	1 octet, data length occupied by data type «Manufacturer Specific Data»

	Data type (0xFF)
	1 octet, Manufacturer Specific Data

	Company ID (0x0D00)
	2 octets

	Packet ID (0x04)
	1 octet

	User data
	6 octets, note that the last two bytes are the CRC16 checksum, which occupies the last two bytes of the User data, with the high byte sent before the low byte. Please refer to the user-defined data protocol below for the specific protocol. The CRC16 checksum result is the result of the operation of the first 15 bytes; that is, the calculation starts from the MAC address to the end of the user data.

	DF field
	BLE 37 channel sends the following content:
0x2F,0x61,0xAC,0xCC,0x27,0x45,0x67,0xF7,0xDB,0x34,0xC4,0x03,0x8E,0x5C,0x0B,0xAA,0x97,0x30,0x56,0xE6
BLE 38 channel sends the following content:
0x6F,0xD3,0x10,0x0F,0x38,0x72,0x2D,0xA8,0x5E,0xC2,0x58,0x99,0x4F,0x8A,0xCE,0xEE,0xB7,0x69,0x88,0x07
BLE 39 channel sends the following content:
0x50,0xBD,0x84,0xB1,0x32,0x9F,0x14,0x9D,0xDD,0x6F,0xD3,0x10,0x0F,0x38,0x72,0x2D,0xA8,0x5E,0xC2,0x58

[bookmark: 2.AOA-信标端上行数据格式]2. AOA - Beacon end uplink data format
The specific format of User data is: command word (1Byte) + data content (3Bytes) + CRC16 (2Bytes)
Among them, command word 0x00--->configuration information; 0x08--->report acceleration information, command byte range 0x09-0x0f represents other user data, the specific content is shown below
Transmitting channel list bit occupation
Table (1):
	Field
	Description

	000b ——->0
	2401MHZ

	001b ——->1
	2402MHZ

	010b ——->2
	2426MHZ

	011b ——->3
	2480MHZ

	100b ——->4
	2481MHZ

Transmission frequency rule list
Table (2):
[image: IMG_256]
Beacon Type Nordic Transmit Power Table
Table (3)
	Actual transmission power
	Corresponding numerical value

	0 dBm
	0

	3 dBm
	1

	4 dBm
	2

	-40 dBm
	3

	-20 dBm
	4

	-16 dBm
	5

	-12 dBm
	6

	-8 dBm
	7

	-4 dBm
	8

	-30 dBm
	9

Beacon Type TI Transmit Power Table
Table (4):
	Actual transmission power
	Corresponding numerical value

	0 dBm
	0

	1 dBm
	1

	2 dBm
	2

	3 dBm
	3

	4 dBm
	4

	5 dBm
	5

	-3 dBm
	6

	-6 dBm
	7

	-9 dBm
	8

	-12 dBm
	9

Beacon end uplink data configuration
Table (5):
bit[0:3]: Specific implementation command, the specific meaning is as followsbit[4-5]: Tell the base station the current version number of the beacon end at this time;
00: Scheme 3 beacon (the original beacon scheme provides SDK, the default is to open the receiving window every 4 seconds for 5ms and also supports private frequency points, note that it is displayed as method 0 in CCS, the beacon end needs to report this value using this scheme)
01: Scheme 1 beacon (provides the SDK's current uplink and downlink alignment scheme, the default is to request downlink data from the base station every 1 second and also supports private frequency points, note that it is displayed as method 1 in CCS, the beacon end needs to report this value using this scheme)
10: Scheme 2 beacon (using the standard official website provided SDK, only supports 37 38 39 three channels, does not support private frequency points, note that it is displayed as method 2 in CCS, the beacon end needs to report this value using this scheme)
11: Reserved bit6: Tell the base station whether the beacon end is currently opening the receiving window;
0: Do not open the window
1: Open the window bit7: Request base station downlink whitening data or non-whitening data;
0: Non-whitening (Scheme 3 and Scheme 1 providing SDK, or completed through 2.4g private protocol)
1: Albinism (using the SDK provided by the standard official website)
Configuration Information Protocol (Command 0x00)
Note: CCS will parse and display it through this command as shown in the screenshot 1 below
Parameter command bit [0:3] ---- > 0x00, Bit [4:7] as shown in Table (5)
bit [0:2]: Transmitting channel (as shown in list 1 above, the actual work corresponds to five channels).
bit [3]: Whether the highest bit enables the receiving mode. 1 indicates that the receiving mode is enabled when power is on, and 0 indicates that the receiving mode is not enabled when power is on.
: bit [4:7]: Value range 0-9 corresponds to the beacon transmission power as shown in Table (3) and Table (4).
bit [0:2]: Beacon device type 000: TI, 001: Nordic, other numbers are reserved.
bit [3]: SOS alarm status value, 0 no alarm, 1 alarm.
bit [4:7]: Battery level in percentage, range 0-10.
bit[0:6]: Transmitting frequency, the rules are shown in the table (2).
bit[7]: ReservedCRCHigh ByteCRCLow Byte
Screenshot 1:
[image: 截图1]
Acceleration Sensor Data Protocol
Note: The x, y, and z-axis data each occupy 8 bits, with a sign bit (8-bit resolution). The acceleration sensor measurement range needs to be set to ±2g.
	Serial Number
	Description

	1
	bit[0:3] Parameter command 0x08, bit[4:7] reserved

	2
	Sensor Data x-axis

	3
	Sensor Data y-axis

	4
	Sensor Data z-axis

	5
	CRC High Byte

	6
	CRC low eight bits

[bookmark: 3.用户自定义数据协议结构（User data）]3. User-defined data protocol structure (User data)
	Serial Number
	Description

	1
	Parameter command——>(0x09——>0x0F), bit[4:7] reserved. (1octet)

	2
	User-defined data (1octet)

	3
	User-defined data (1octet)

	4
	User-defined data (1octet)

	5
	CRC high eight bits (1octet)

	6
	CRC low eight bits (1octet)

[bookmark: 3.1 命令字 0x00[配置信息]]3.1 Command word 0x00 [Configuration information]
	Field
	Description

	Command word
	0x00

	Data 1
	bit[0:2]: Transmission channel (1: channel 37, 2: channel 38, 3: channel 39);
bit[3]: Whether the highest bit enables the receiving mode. 1 indicates that the receiving mode is enabled upon power-on, and 0 indicates that the receiving mode is not enabled upon power-on;
bit[4:7]: The value range is 0-9, corresponding to the beacon transmission power as shown in Table (3) and Table (4);

	Data 2
	bit[0:2]: Beacon device type 000: TI, 001: Nordic, other numbers are reserved; bit[3]: Alarm status value, 0 no alarm, 1 alarm; bit[4:7]: Battery level in percentage, range 0-10

	Data 3
	bit[0:6]: Transmission frequency, rules are shown in Table (2). bit[7]: Reserved

[bookmark: 3.2 命令字 0x08[加速度传感数据]]3.2 Command word 0x08 [Acceleration sensor data]
Note: The x, y, and z-axis data each occupy 8 bits, with a sign bit (8-bit resolution). The acceleration sensor measurement range needs to be set to ±2g.
	Field
	Description

	Command word
	0x08 is decimal 08

	Data 1
	Sensor Data x-axis

	Data 2
	Sensor Data y-axis

	Data 3
	Sensor Data z-axis

[bookmark: 3.3 命令字0x09[设备状态]]3.3 Command word 0x09 [Device status]
	Field
	Description

	Command word
	0x09 is decimal 09 (data 0 is the value of this field)

	Data 1
	Bits 0-1: Reserved, default value is 0
Bit 2: Charger insertion status 1 inserted; 0 not inserted
Bit 3: Charging status 1 charging 0 not charging/full
Bit 4: SOS status 1 alarm 0 normal
Bit 5: Wearing status 1 not wearing 0 wearing
Bit 6: Motion status 1 moving 0 stationary
Bit 7: Exercise mode 1 on 0 off

	Data 2
	Software version

	Data 3
	Voltage value is (reading/2556.6) V
Example: If the reading is decimal 159, then the voltage is 159/2556.6=4.1V

[bookmark: 3.4 命令字0x0A]3.4 Command word 0x0A
	Field
	Description

	Command word
	0x0A is decimal 10

	Data 1
	Heart rate (BPM): 200 (decimal) or less is a normal heart rate; 252 (decimal) measurement abnormal; 250 (decimal) not worn, 251 (decimal) heart rate module abnormal, 255 (decimal): tag does not support heart rate module, 0 (decimal) measurement not completed

	Data 2
	255: The tag does not support the heart rate module. 0 Measurement not completed, systolic blood pressure (decimal)

	Data 3
	255: The tag does not support the heart rate module. 0 Measurement not completed, diastolic blood pressure (decimal)

[bookmark: 3.5 命令字0x0C]3.5 Command word 0x0C
	Field
	Description

	Command word
	0x0C is decimal 12

	Data 1
	Body surface temperature (value + 200)/10; for example, 156 represents 35.6 degrees Celsius 0xAA

	Data 2
	Step count low byte

	Data 3
	Step count high byte

Step calculation
For example, if the low byte is 0x56 and the high byte is 0x78, then the total step count is 0x7856, which can then be converted to decimal.

[bookmark: 3.6 命令字0x0D[睡眠状态]]3.6 Command word 0x0D [Sleep state]
	Field
	Description

	Command word
	0x0D is decimal 13

	Data 1
	Sleep state (0x00: Awake; 0X01: Light sleep; 0X02: Deep sleep; 0XFF: Not detected)

	Data 2
	Light sleep time (statistics of hours and minutes, uploaded in units of 10 minutes, for example, 5h30min, the reported data is: (5*60+30)/10=33, report 33)

	Data 3
	Deep sleep time (statistics of hours and minutes, uploaded in units of 10 minutes, for example, 5h30min, the reported data is: (5*60+30)/10=33, report 33)

[bookmark: 3.7 命令字0x0E[设备标识]]3.7 Command word 0x0E [Device identification]
	Field
	Description

	Command word
	0x0E is decimal 14

	Data 1
	Device identification high byte, such as X3W, is 0x08

	Data 2
	Device identification low byte, such as X3W, is 0x26

	Data 3
	Reserved item

[bookmark: 4. CRC16bit校验运算参考]4. CRC16bit check calculation reference
/* CRC byte value table - high byte */const unsigned char gClient_auchCRCHi[256] = {0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
} ;
/* CRC byte value table - low byte */const unsigned char gClient_auchCRCLo[256] = {0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06,0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3,0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60,0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,0xA5, 0x65,0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E,0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,0x43, 0x83, 0x41, 0x81, 0x80, 0x40 } ;
//CRC16static uint16_t AoA_SendCrc16(uint16_t Len, uint8_t *pBuf){
uint8_t uchCRCHi ; /* High CRC byte initialization */
uint8_t uchCRCLo ; /* Low CRC byte initialization */
uint8_t uIndex ; /* Index in CRC loop */
uint16_t CrcValue;
uchCRCHi = 0xFF ;
uchCRCLo = 0xFF ;
while (Len--) /* Transfer message buffer */
{
uIndex = uchCRCHi ^ (*pBuf++); /* Calculate CRC */
uchCRCHi = uchCRCLo ^ gClient_auchCRCHi[uIndex];
uchCRCLo = gClient_auchCRCLo[uIndex];
}
CrcValue = uchCRCHi;CrcValue <<= 8;CrcValue |= uchCRCLo;
return CrcValue;
}
[bookmark: 5.发送示例]5. Sending Example
[bookmark: 5.1 BLE 广播具体发送加速度传感器数据内容示例]5.1 Example of Specific Content of Acceleration Sensor Data Sent by BLE Broadcast
Example:
0x02 //Fixed byte
0x25 //Fixed byte
0x01,0x02,0x03,0x04,0x05,0x06 //MAC address Fixed6bytes
0x1E //Fixed byte
0xFF //Fixed byte
0x0D //Fixed byte
0x00 //Fixed byte
0x04 //Fixed byte
0x08 //Acceleration command word
0x01 //Accelerometer x-axis data (note that the raw x-axis data of the accelerometer is read here, resolution8bits)
0x01 //Accelerometer y-axis data (note that the raw y-axis data of the accelerometer is read here, resolution8bits)
0x3E //Accelerometer z-axis data (note that the raw z-axis data of the accelerometer is read here, resolution8bits)
0xB7 //CRC16bit checksum high byte. The result of the checksum calculation for the preceding15bytes; that is, the calculation starts from the MAC address and ends with the user data;
0xE6 //CRC16bit checksum low byte;0x2F,0x61,0xAC,0xCC,0x27,0x45,0x67,0xF7,0xDB,0x34,0xC4,0x03,0x8E,0x5C,0x0B,0xAA,0x97,0x30,0x56,0xE6
[bookmark: 5.2 BLE 广播具体发送用户数据内容示例]5.2 Example of specific user data content sent by BLE broadcast
Example:
[bookmark: _GoBack]0x02 //Fixed byte
0x25 //Fixed byte
0x01,0x02,0x03,0x04,0x05,0x06 //MAC address Fixed6bytes
0x1E //Fixed byte
0xFF //Fixed byte
0x0D //Fixed byte
0x00 //Fixed byte
0x04 //Fixed byte
0x09 //User command word range0x09-0x0F;
0x02 //User-defined data (note that here0x02only serves as an example, users can customize other data)
0x03 //User-defined data (note that here0x03only serves as an example, users can customize other data)
0x04 //User-defined data (note that here0x04only serves as an example, users can customize other data)
0xC7 //CRC16bit checksum high byte. The result of the first 15bytes of the checksum operation; that is, the calculation starts from the MAC address to the user data cutoff;
0x69 //CRC16bit checksum low byte;
0x2F,0x61,0xAC,0xCC,0x27,0x45,0x67,0xF7,0xDB,0x34,0xC4,0x03,0x8E,0x5C,0x0B,0xAA,0x97,0x30,0x56,0xE6
image1.png
bit6: 1%7Hz>=1Hz, B

; 0F mHz< 1 AM>1s

bits: 1%7{3%10; 0 BB

bits _bits

bita__ bita btz |bitl _[bit0

I[bid bit0] a8, BI[123-311% H

b [oitd DO} T10+HzEL, B[102030 ~310] Hhizfh

Ifbid bito] e AR E._E[123 - SUFHE

[
1
o
1

bfoitd o0& T10- B8, W[102030 310 SBE

]
&

s bite

bits _ bita |bitz _ |biz _[bits

0003333,

001

002

0033333,

003

o1

0111111

0125

0142857,

0166667,

02

025

0333333

05|

s s en o o 535 28

(S S N N = = P Y S Y Y PN N

8151835 en o o

image2.png

