蓝牙AOA广播协议
综述：
目前支持超低功耗蓝牙BLE5.1，支持对接蓝牙网关、蓝牙AoA高精度网关（核芯物联、蓝策等主流网关）；连接蓝牙设备；扫描信标等所有蓝牙协议和功能
[bookmark: <strong>1.AOA广播发送格式</strong>]1.AOA广播发送格式
	字段名称
	说明

	报头(0x02)
	1 octet，报文类型为不可连接广播

	长度(0x25)
	这个长度是指在 PDU 中的数据除去报头和长度之外的有效净荷数据长度

	发送MAC地址
	6 octets

	长度(0x1E)
	1 octet，数据类型«Manufacturer Specific Data»占用的数据长度

	数据类型(0xFF)
	1 octet,Manufacturer Specific Data

	Company ID(0x0D00)
	2 octets

	Packet ID(0x04)
	1 octet

	User data
	6 octets，注意后面两个字节为CRC16校验码，占用User data最后两个字节，高字节发送在前低字节在后面。具体协议请参照下面用户自定义数据协议。CRC16校验码结果为前面15个字节运算的结果; 也就是从MAC地址开始计算到用户数据截止

	DF field
	BLE 37通道 发送内容为:
0x2F,0x61,0xAC,0xCC,0x27,0x45,0x67,0xF7,0xDB,0x34,0xC4,0x03,0x8E,0x5C,0x0B,0xAA,0x97,0x30,0x56,0xE6
BLE 38通道 发送内容为:
0x6F,0xD3,0x10,0x0F,0x38,0x72,0x2D,0xA8,0x5E,0xC2,0x58,0x99,0x4F,0x8A,0xCE,0xEE,0xB7,0x69,0x88,0x07
BLE 39通道 发送内容为:
0x50,0xBD,0x84,0xB1,0x32,0x9F,0x14,0x9D,0xDD,0x6F,0xD3,0x10,0x0F,0x38,0x72,0x2D,0xA8,0x5E,0xC2,0x58



[bookmark: <strong>2.AOA-信标端上行数据格式</strong>]2.AOA-信标端上行数据格式
User data 具体格式为：命令字(1Byte)+数据内容(3Bytes)+CRC16(2Bytes)
其中命令字 0x00—->配置信息;0x08—->上报加速度信息,命令字节范围0x09-0x0f代表其他用户数据，具体内容如下所示
发射信道列表bit占用
表(1)：
	字段
	说明

	000b ——->0
	2401MHZ

	001b ——->1
	2402MHZ

	010b ——->2
	2426MHZ

	011b ——->3
	2480MHZ

	100b ——->4
	2481MHZ




发射频率规则列表
表(2)：
[image: IMG_256]
信标(Beacon)类型 Nordic发射功率表
表(3)
	实际发射功率
	对应数值大小

	0 dBm
	0

	3 dBm
	1

	4 dBm
	2

	-40 dBm
	3

	-20 dBm
	4

	-16 dBm
	5

	-12 dBm
	6

	-8 dBm
	7

	-4 dBm
	8

	-30 dBm
	9



Beacon类型 TI发射功率表
表（4）：
	实际发射功率
	对应数值大小

	0 dBm
	0

	1 dBm
	1

	2 dBm
	2

	3 dBm
	3

	4 dBm
	4

	5 dBm
	5

	-3 dBm
	6

	-6 dBm
	7

	-9 dBm
	8

	-12 dBm
	9



信标端上行数据配置
表(5)：
bit[0:3]：具体实现命令，具体含义如下所示bit[4-5]：告诉基站此时信标端当前的版本号;
    00：方案3信标（原来信标方案提供SDK，默认是每隔4秒开启5ms的接收窗口同时支持私有频点，注意在CCS显示为方式0，采用这种方案信标端需要上报该值）
    01：方案1信标（提供SDK现在的上下行对齐方案，默认是每隔1秒请求基站下行数据同时支持私有频点，注意在CCS显示为方式1，采用这种方案信标端需要上报该值）
    10：方案2信标（采用标准官网提供的SDK，只支持37 38 39三个信道，不支持私有频点，注意在CCS显示为方式2，采用这种方案信标端需要上报该值）
    11：保留bit6：告诉基站此时信标端是否开启接收窗口;
    0：不开窗
    1：开窗bit7:请求基站下行白化数据还是非白化数据;
    0: 非白化（提供SDK的方案3和方案1，或者说通过2.4g私有协议完成）
    1：白化 （采用标准官网提供的SDK）
配置信息协议(命令 0x00)
注意CCS会通过该命令进行解析并显示出来如下截图1所示
参数命令bit[0:3]---->0x00,  Bit[4:7]如表(5)所示
bit[0:2]:发射信道(如上面列表1所示对应实际工作为五个信道)。
bit[3]:最高位是否开启接收模式 1表示一上电开启了接收模式，0一上电没有开启接收模式
：bit[4:7]:数值范围0-9 对应信标发射功率如表(3)、表(4)所示。
bit[0:2]:信标设备类型000:TI,001:Nordic，其他数字保留。
bit[3]:SOS报警状态值，0没有报警，1报警。
bit[4:7]:电池电量单位百分比，范围 0-10。
bit[0:6]:发射频率，规则如表(2)所示。
bit[7]:保留CRC高八位CRC低八位
截图1：
[image: 截图1]
加速度传感数据协议
注意 x,y,z三轴数据分别占用8bit，有符号位(分辨率8bit)，加速度传感器测量范围需要设置±2g
	序号
	说明

	1
	bit[0:3]参数命令0x08, bit[4:7]保留

	2
	传感数据 x轴

	3
	传感数据 y轴

	4
	传感数据 z轴

	5
	CRC高八位

	6
	CRC低八位



[bookmark: <strong>3.用户自定义数据协议结构（User data）</strong>]3.用户自定义数据协议结构（User data）
	序号
	说明

	1
	参数命令——>(0x09——>0x0F)，bit[4:7]保留。（1octet）

	2
	用户自定义数据（1octet）

	3
	用户自定义数据（1octet）

	4
	用户自定义数据（1octet）

	5
	CRC高八位（1octet）

	6
	CRC低八位（1octet）



[bookmark: <strong>3.1 命令字 0x00[配置信息]</strong>]3.1 命令字 0x00[配置信息]
	字段
	说明

	命令字
	0x00

	数据1
	bit[0:2]:发射信道(1:37信道，2:38信道，3：39信道)；
bit[3]:最高位是否开启接收模式 1表示一上电开启了接收模式，0一上电没有开启接收模式；
bit[4:7]:数值范围0-9 对应信标发射功率如表(3)、表(4)所示；

	数据2
	bit[0:2]:信标设备类型000:TI,001:Nordic，其他数字保留；bit[3]:报警状态值，0没有报警，1报警；bit[4:7]:电池电量单位百分比，范围 0-10

	数据3
	bit[0:6]:发射频率，规则如表(2)所示。bit[7]:保留



[bookmark: <strong>3.2 命令字 0x08[加速度传感数据]</strong>]3.2 命令字 0x08[加速度传感数据]
注意：x,y,z三轴数据分别占用8bit，有符号位(分辨率8bit)，加速度传感器测量范围需要设置±2g。
	字段
	说明

	命令字
	0x08即十进制08

	数据1
	传感数据 x轴

	数据2
	传感数据 y轴

	数据3
	传感数据 z轴



[bookmark: <strong>3.3 命令字0x09[设备状态]</strong>]3.3 命令字0x09[设备状态]
	字段
	说明

	命令字
	0x09即十进制09（数据0为该字段值）

	数据1
	第0-1位： 保留，默认值为0
第2位： 充电器插入状态 1插入；0未插入
第3位： 充电状态 1充电中 0未充电/充满
第4位： SOS状态 1 报警 0正常
第5位： 佩戴状态 1未佩戴 0佩戴
第6位： 动静状态 1动 0静
第7位： 运动模式 1开启 0 关闭

	数据2
	软件版本

	数据3
	电压值为（读数/2556.6） V
举例：读出10进制159则电压为159/2556.6=4.1V



[bookmark: <strong>3.4 命令字0x0A</strong>]3.4 命令字0x0A
	字段
	说明

	命令字
	0x0A即十进制10

	数据1
	心率（BPM） ：200（十进制）以下是正常心率 ; 252（十进制）测量异常； 250（十进制）未佩戴，251（十进制）心率模块异常，255（十进制）：标签不支持心率模块，0（十进制）未完成测量

	数据2
	255：标签不支持心率模块。0未完成测量，收缩压（十进制）

	数据3
	255：标签不支持心率模块。0未完成测量，舒张压（十进制）



[bookmark: <strong>3.5 命令字0x0C</strong>]3.5 命令字0x0C
	字段
	说明

	命令字
	0x0C即十进制12

	数据1
	体表温度(值+200)/10; 例如156 表示为35.6摄氏度 0xAA

	数据2
	计步低字节

	数据3
	计步高字节


计步计算
比如低字节是0x56，高字节是0x78，那总计步数就是0x7856，再转成10进制就可以

[bookmark: <strong>3.6 命令字0x0D[睡眠状态]</strong>]3.6 命令字0x0D[睡眠状态]
	字段
	说明

	命令字
	0x0D即十进制13

	数据1
	睡眠状态 （0x00:清醒；0X01:浅度睡眠；0X02:深度睡眠；0XFF:未检测）

	数据2
	浅睡眠时间（统计小时和分钟，以10min为单位进行上传，比如5h30min，上报数据为：（5*60+30）/10=33，上报33）

	数据3
	深睡眠时间（统计小时和分钟，以10min为单位进行上传，比如5h30min，上报数据为：（5*60+30）/10=33，上报33）



[bookmark: <strong>3.7 命令字0x0E[设备标识]</strong>]3.7 命令字0x0E[设备标识]
	字段
	说明

	命令字
	0x0E即十进制14

	数据1
	设备标识高字节，例如X3W，则为0x08

	数据2
	设备标识低字节，例如X3W，则为0x26

	数据3
	保留项



[bookmark: <strong>4. CRC16bit校验运算参考</strong>]4. CRC16bit校验运算参考
/* CRC 字节值表 －高位 */const unsigned char gClient_auchCRCHi[256] = {0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
} ;
/* CRC 字节值表 －低位 */const unsigned char gClient_auchCRCLo[256] = {0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06,0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3,0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60,0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E,0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,0x43, 0x83, 0x41, 0x81, 0x80, 0x40 } ;
//CRC16static uint16_t AoA_SendCrc16(uint16_t Len, uint8_t *pBuf){
      uint8_t  uchCRCHi ; /* 高CRC字节初始化 */
      uint8_t  uchCRCLo ; /* 低CRC字节初始化 */
      uint8_t  uIndex ;         /* CRC循环中的索引 */
      uint16_t CrcValue;
    uchCRCHi = 0xFF;
    uchCRCLo = 0xFF;
    while(Len--)     /* 传输消息缓冲区 */
    {
      uIndex = uchCRCHi ^ (*pBuf++ );  /* 计算CRC */
      uchCRCHi = uchCRCLo ^ gClient_auchCRCHi[uIndex];
      uchCRCLo = gClient_auchCRCLo[uIndex];
    }
    CrcValue = uchCRCHi;CrcValue <<= 8;CrcValue |= uchCRCLo;
    return CrcValue;
}
[bookmark: <strong>5.发送示例</strong>]5.发送示例
[bookmark: <strong>5.1 BLE 广播具体发送加速度传感器数据内容示例</strong>]5.1 BLE 广播具体发送加速度传感器数据内容示例
示例：
0x02    //固定字节
0x25    //固定字节
0x01,0x02,0x03,0x04,0x05,0x06 //MAC地址 固定6个字节
0x1E   //固定字节
0xFF   //固定字节
0x0D   //固定字节
0x00   //固定字节
0x04   //固定字节
0x08   //加速度命令字
0x01   //加速度传感器x轴数据（注意这里读取加速度传感器原始x轴数据，分辨率8位）
0x01   //加速度传感器y轴数据（注意这里读取加速度传感器原始y轴数据，分辨率8位）
0x3E   //加速度传感器z轴数据（注意这里读取加速度传感器原始z轴数据，分辨率8位）
0xB7   //CRC16bit 校验码高字节 校验码前面15个字节运算的结果; 也就是从MAC地址开始计算到用户数据截止;
0xE6   //CRC16bit 校验码低字节;0x2F,0x61,0xAC,0xCC,0x27,0x45,0x67,0xF7,0xDB,0x34,0xC4,0x03,0x8E,0x5C,0x0B,0xAA,0x97,0x30,0x56,0xE6
[bookmark: <strong>5.2 BLE 广播具体发送用户数据内容示例</strong>]5.2 BLE 广播具体发送用户数据内容示例
示例：
[bookmark: _GoBack]0x02    //固定字节
0x25    //固定字节
0x01,0x02,0x03,0x04,0x05,0x06 //MAC地址 固定6个字节
0x1E   //固定字节
0xFF   //固定字节
0x0D   //固定字节
0x00   //固定字节
0x04   //固定字节
0x09   //用户命令字 范围0x09-0x0F;
0x02   //用户自定义数据（注意这里0x02只作为示例，用户可自定义其他数据）
0x03   //用户自定义数据（注意这里0x03只作为示例，用户可自定义其他数据）
0x04   //用户自定义数据（注意这里0x04只作为示例，用户可自定义其他数据）
0xC7   //CRC16bit 校验码高字节 校验码前面15个字节运算的结果; 也就是从MAC地址开始计算到用户数据截止;
0x69   //CRC16bit 校验码低字节;
0x2F,0x61,0xAC,0xCC,0x27,0x45,0x67,0xF7,0xDB,0x34,0xC4,0x03,0x8E,0x5C,0x0B,0xAA,0x97,0x30,0x56,0xE6
image1.png
bit6: 1%7Hz>=1Hz, B

; 0F mHz< 1 AM>1s

bits: 1%7{3%10; 0 BB

bits _bits

bita__ bita btz |bitl _[bit0

I[bid bit0] a8, BI[123-311% H

b [oitd DO} T10+HzEL, B[102030 ~310] Hhizfh

Ifbid bito] e AR E._E[123 - SUFHE

[
1
o
1

bfoitd o0& T10- B8, W[102030 310 SBE

]
&

s bite

bits _ bita  |bitz _ |biz _[bits

0003333,

001

002

0033333,

003

o1

0111111

0125

0142857,

0166667,

02

025

0333333

05|

s s en o o 535 28

(S S N N = = P Y S Y Y PN N

8151835 en o o





image2.png




